

Gemini Lake Signing and

Manifesting Guide

User Guide

Revision 1.0

August 2017

Intel Confidential

2 Intel Confidential User Guide

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE,

EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED

BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH

PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED

WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES

RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or

indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH

MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES,

SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS

AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT

OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN

ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR
WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must

not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined". Intel

reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities

arising from future changes to them. The information here is subject to change without notice. Do not finalize a
design with this information.

The products described in this document may contain design defects or errors known as errata which may cause
the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

*Other names and brands may be claimed as the property of others.

Copyright © 2017, Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

User Guide Intel Confidential 3

Contents

1 Introduction .. 6

1.1 Goal .. 6
1.2 Pre-Requisites ... 6
1.3 Tools Used In This Document .. 6
1.4 Terminology ... 7

2 Manifesting and Signing OEM Components in the IFWI Image 8

2.1 Creating a Signed IFWI Image .. 8
2.2 Creating an Unsigned IFWI Image ... 9

2.2.1 Summary of creating Un-signed Image: 10

3 Creating PKI Key Pairs .. 11

3.1 Introduction ... 11
3.2 Generating Key Pair for Signing ... 11
3.3 Creating the Public Key Hash: ... 11

3.3.1 Creating Public Key Hash Using Intel® MEU 11
3.3.2 Creating Public Key Hash Manually .. 12

3.4 Key Security ... 13

4 Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries 14

4.1 Introduction ... 14
4.2 Binary Manifesting Signing Overview .. 14
4.3 Intel® MEU Configuration .. 15
4.4 Intel® MEU Usage Flow ... 16
4.5 Intel® MEU Decomposition .. 17
4.6 Intel® MEU Resign ... 18

4.6.1 Secure Signing for SMIP .. 18
4.7 Different Binary Types Supported By Intel® MEU 19

4.7.1 IAFW/BIOS .. 19
4.7.2 ISH .. 22
4.7.3 IUnit / aDSP .. 24
4.7.4 SMIP .. 25

5 OEM Key Manifest .. 26

5.1 Introduction ... 26
5.2 Creation of Manifest ... 26

6 Add Components to Intel® FIT ... 30

6.1 Introduction ... 30
6.2 Include each Binary Component .. 30
6.3 Add the Private Key for SMIP .. 30
6.4 Add the OEM Key Manifest .. 31
6.5 Add the Public Key Hash for OEM Key Manifest .. 31
6.6 Change the Key Manifest ID .. 32
6.7 Enable Boot Guard... 32
6.8 Configure Intel FIT to call Intel® MEU to Sign and Manifest the SMIP 32
6.9 Add Debug Token .. 33

7 Creation of Update Image ... 34

7.1 Introduction ... 34

4 Intel Confidential User Guide

7.2 DnX .. 34
7.2.1 DnX Image Creation Using Intel® MEU 34
7.2.2 DnX Image Creation Using Intel FIT .. 35

7.3 BIOS Capsule Update ... 36

8 Using Intel MEU with Other Signing Tools .. 37

8.1 Introduction ... 37
8.2 Creating Keys and Hashes .. 37
8.3 Create Manifested Binaries ... 37
8.4 Export Manifests ... 37
8.5 Sign Manifests .. 38
8.6 Import Manifest .. 39

9 Common Bring Up Issues and Troubleshooting Table ... 40

9.1 Common Bring Up Issues and Troubleshooting Table 40

Figures

Figure 1. High Level Overview of Manifesting and Signing OEM Components in the IFWI Image 9
Figure 2. Schematic View of Manifesting and Signing Process ... 15
Figure 3. Intel MEU Configuration xml ... 16
Figure 4. Intel MEU list of Supported Binary Types .. 17
Figure 5. Default BIOS xml ... 20
Figure 6. BIOS xml Edited to Accept all Possible Binary Components ... 21
Figure 7. Code Partition xml .. 23
Figure 8. Code Partition Metadata xml .. 24
Figure 9. Default OEM Key Manifest XML ... 27
Figure 10. OEM Key Manifest with 3 Different Signing Keys .. 28
Figure 11. Intel FIT fields to enter IUnit, PMC and uCode Binaries ... 30
Figure 12. Entering SMIP private key .. 31
Figure 13. Entering OEM Key Manifest .. 31
Figure 14. Entering OEM Public Key Hash .. 32
Figure 15. Entering OEM Public Key Hash .. 32
Figure 16. Configuring Intel FIT to sign the SMIP .. 33
Figure 17. Adding a Debug Token .. 33
Figure 18. DnX xml .. 35

Tables

Table 1. Components Recognized by Intel MEU, and How Key Manifests should Handle 28

User Guide Intel Confidential 5

Revision History

Revision Number Description Revision Date

0.5 Initial Release January 2017

0.6 Updates:

- Section 2.2: removed mention about Dnx key for unsigned

images.

- Added section 2.2.1 of full summary on what to

skip/remove for unsigned image.

- Updated section 7.1 to clarify usage of update images.

March 2017

0.8 Updates:

- Section 4.4: Updated MEU binlist screenshot

- Section 4.7.1.1: Updated details on default BIOS xml

April 2017

1.0 Updated revision number to 1.0 to align with other documents

for GLK PV

August 2017

Introduction

6 Intel Confidential User Guide

1 Introduction

This document gives an overview of the process of manifesting and signing OEM

components that then will be included in the IFWI image for Gemini Lake platforms.

OEMs are always required to add manifests to components in the IFWI images.

However, they are not required to sign components, or add an OEM Key Manifest,
unless they wish to

 enable Secure Boot

 make use of OEM Debug Unlock tokens

 replace any of the Intel provided binaries (such as iUnit, aDSP, ISH)

In any of these cases, OEMs must sign all components and include an OEM Key

Manifest, as explained in this User Guide.

1.1 Goal

The goal of this guide is to train the user to:

1. Manifest and sign OEM components

2. Include data on all signatures in the IFWI image

3. Build the IFWI image

1.2 Pre-Requisites

The user should download and install the following kit.

 Latest Intel® TXE FW kit

The kit can be downloaded from the following location:

https://platformsw.intel.com/

The overall platform bring-up procedure is described in:

 GLK Firmware Bring Up Guide

The System Tools User Guide gives further detail on the usage of all firmware
manufacturing and is the definitive guide to the details of each tool’s usage:

 GLK System Tools User Guide

1.3 Tools Used In This Document

The following tools are used within this document:

 Intel® Flash Image Tool (Intel® FIT) [Intel® TXE Kit]

 Intel® Manifest Extension Utility (Intel® MEU) [Intel® TXE Kit]

 Open SSL [Open Source]

https://platformsw.intel.com/

Introduction

User Guide Intel Confidential 7

1.4 Terminology

Term Description

Intel® FIT Intel® Flash Image Tool

IBB Initial Boot Block

IBBL Initial Boot Block Loader

IFWI Integrated Firmware Image

ISH Integrated Sensor Hub

OBB

Intel® MEU Intel® Manifest Extension Utility

SUT System Under Test

§

Manifesting and Signing OEM Components in the IFWI Image

8 Intel Confidential User Guide

2 Manifesting and Signing OEM

Components in the IFWI Image

2.1 Creating a Signed IFWI Image

A high-level overview of creating a signed IFWI image using OEM components is

described below. The key steps are:

1. Generate PKI key pairs and the public key hash for:

a. Each entry in the OEM Key Manifest. These are enumerated in Section 5.2.

b. The OEM Key Manifest

2. Use the Intel® MEU tool to add to each binary a manifest, signature, and where
relevant also add metadata, stitch and/or compress the binary.

3. Create an OEM Key Manifest, including within it the public key hash of each of the
created keys, and use the Intel MEU to sign it. Note: The order in which steps 2
and 3 are executed does not matter.

4. Add each binary component to the Intel FIT

5. Add to Intel FIT the private key to sign the SMIP. This is private key of one of the
key pairs already created in step 1.a and whose public key hash is included in the
OEM Key Manifest in step 3.

6. Add to Intel FIT the OEM Key Manifest created in step 3.

7. Add to Intel FIT the public key hash for the OEM Key Manifest. This will be burned

into an IFP when the system closes manufacture, and can never be changed after

this stage.

8. Configure Intel FIT to be able to call the Intel MEU to sign and manifest the SMIP.

9. In some cases, add a debug token to Intel FIT, to allow the image to be

debugged. Note that in general, debug tokens can be injected into the system
post-manufacture, as needed, and not be included in the Intel FIT.

10. If using Intel FIT to create a DnX image, configure Intel FIT to also build, manifest
and sign such an image during compilation time. This includes supplying Intel FIT

with the private key for signing the DnX image, which is the same key used for
signing the OEM Key Manifest.

Manifesting and Signing OEM Components in the IFWI Image

User Guide Intel Confidential 9

Figure 1. High Level Overview of Manifesting and Signing OEM Components in the IFWI

Image

Add
 Hash
 Manifest
 Metadata (optional)

Stitch components (optional)
Compress (optional)

MEU
MEU signs

with
OpenSSL

Take each
binary

needing
manifest and

signature

Signed and
manifested

binary
component

Create key pairs for OEM
Key Manifest entries and

OEM Key Manifest

Create OEM
Key Manifest
xml, listing all
public key
hashes, where
relevant

Add hash, manifestMEU
MEU signs

with
OpenSSL

Signed and
manifested
OEM Key

Hash
Manifest

2.2 Creating an Unsigned IFWI Image

A high-level overview of creating an unsigned IFWI image using OEM components

is described below. The key steps are:

1. Use the Intel MEU tool to add to each binary a manifest, and where relevant also
add metadata, stitch and/or compress the binary.

2. Add each binary component to the Intel FIT

3. If using Intel FIT to create a DnX image, configure Intel FIT to also build DnX
image but do not include DnX signing key.

Creating an unsigned IFWI image skips the following steps required in the creation of

a signed IFWI image:

 Generation of PKI key pairs and their public key hashes.

 Using the Intel MEU tool to add to each binary a signed manifest. You still need to
use the Intel MEU tool to add to each binary a manifest, and where relevant also

add metadata, stitch and/or compress the binary.

Manifesting and Signing OEM Components in the IFWI Image

10 Intel Confidential User Guide

 Creation of an OEM Key Manifest.

 Adding to Intel FIT the private key to sign the SMIP & DnX Image.

 Adding to Intel FIT the OEM Key Manifest.

 Adding to Intel FIT the public key hash for the OEM Key Manifest.

 Configuring Intel FIT to be able to call the Intel MEU to sign the SMIP. However,
Intel FIT must still be configured to be able to call the Intel MEU to manifest the
SMIP.

 Supplying Intel FIT with the private key for signing a DnX image, if the target

platform does not expect signed images.

2.2.1 Summary of creating Un-signed Image:

Using TXE FW Bring Up guide (found in TXE FW kit), create IFWI image with ISH, iUnit & aDSP

Intel signed binaries.

a. Do not create OEM KM structure nor include OEM Public key hash in FIT image.

b. Do not include SMIP signing key in FIT when creating the image.

In FIT - Under Platform Protection tab/xml, do not include the following:
- OEM Key Manifest Binary

- OEM Public Key Hash

- SMIP Signing Key

In FIT – Under Download and Execute tab/xml, do not include the following:

- SigningKey

In FIT – Build Settings:

- Make sure “Signing Tool” Path is empty

In MEU_config.xml (meu -gen meu_config):

 <SigningTool value="OpenSSL Disabled "

value_list="Disabled,,OpenSSL,,MobileSigningUtil" label="Signing Tool" help_text="Select

tool to be used for signing, or disable signing." />

In MEU XML for stitching BIOS (meu -gen Bios):

 <BootPolicyManifest>

 <Enabled value="true false" value_list="true,,false" help_text="If set to 'Disabled'

the Boot Policy Manifest will not be created and thus the IBB, IBBL and OBB modules will not

be covered by the manifest signature." />

 </BootPolicyManifest>

§

Creating PKI Key Pairs

User Guide Intel Confidential 11

3 Creating PKI Key Pairs

3.1 Introduction

If creating a signed IFWI image, you will need to create PKI key pairs, as well as the

public key hash for

1. Each entry in the OEM Key Manifest. These are enumerated in Section 5.2.

2. The OEM Key Manifest

3.2 Generating Key Pair for Signing

The Intel tools are designed to work together with the open source OpenSSL tool

(version 1.0.2b or higher), which generates key pairs in the RSA-2048 PKCS-1.5
format. This is the only key format which is supported for the Intel IFWI
image signing flow! Although other tools which generate key pairs in this format can

be used for signing, Intel tools currently do not interface with any other tool, and if
you choose to use a different tool, Intel cannot provide support.

The OpenSSL tool is not provided by Intel, and it must be installed separately. One

source for OpenSSL binaries is Shining Light Productions, the "Light" version is
sufficient. Ensure that OpenSSL.exe can be run in the directory in which it is installed,

and it is able to create output files there as well, otherwise you may see errors when
executing some of the commands.

You can generate a private key by running the following command from the CLI:
openssl.exe genrsa --out privkey.pem 2048

A public key can be extracted from the private key using:
openssl.exe rsa -in privkey.pem -pubout -out pubkey.pem

3.3 Creating the Public Key Hash:

A public key hash is a binary file containing the modulus and exponent of the public

key in little endian format. You can create it using the Intel® MEU, or manually.

3.3.1 Creating Public Key Hash Using Intel® MEU

You can created the public key hash using Intel® MEU in one of 3 different ways:

1. Extraction from an already signed binary:
meu.exe -keyhash <output hashfile> -f <input.bin>

2. Extraction from a public or private key in PEM format
meu.exe -keyhash <output hashfile> -key <inputkey.pem>

3. Creation when building or signing a binary
meu.exe -keyhash <output hashfile> -f <input.xml> -o <output.bin>

https://slproweb.com/products/Win32OpenSSL.html

Creating PKI Key Pairs

12 Intel Confidential User Guide

The public key hash is a readable string, and can be copied and pasted
from the text file as needed.

Here is an example of generating the public key hash from a signed binary:
meu.exe -keyhash temp/hash -f iunp.bin
===
Intel(R) Manifest Extension Utility. Version: 3.0.0.1048
Copyright (c) 2013 - 2015, Intel Corporation. All rights reserved.
10/29/2015 - 10:10:24 am
===

Command Line: meu -keyhash temp/hash -f iunp.bin
Log file written to meu.log
Loading XML file: C:/Users/meu_config.xml
Public Key Hash Value:
 14 05 A8 A4 EB 1C 8A C2 51 19 7D 85 96 14 09 FF 15 FD CD 23 D3 25 CC DD
88 D2 17 5C DE 3B 27 36

Public Key Hash Saved to:
 temp\hash.bin
 temp\hash.txt
Program terminated.

3.3.2 Creating Public Key Hash Manually

You can create a public key hash manually, in one of two different ways:

1. Extraction from the public or private key:

a. Using OpenSSL, dump the key details:
If using the public key:

openssl.exe rsa -in public.pem -text -noout -pubin

If using the private key:

openssl.exe rsa -in private.pem -text -noout

b. Copy the modulus (excluding any leading bytes that are all 0s)

c. Reverse the modulus byte order (Use excel to paste all the bytes on different
rows into a column, then put ascending numbers in another column and do a

reverse sort on the numbers)

d. Paste the reverse byte modulus into a new file <new file> in a hex editor

e. Copy the exponent following the modulus into the new file (make sure it is
little endian)

Hash the new file using

openssl.exe dgst -sha256 <new file>

2. Extraction from a manifest signed with the keys, by MEU

a. Open a signed file that MEU has created in a hex editor

b. Search for the string “$MN2”, then move 100 bytes after the start of “$MN2”
(this will be the start of the modulus + exponent)

c. Extract the following 260 bytes to a new file <new file>

d. Hash the new file using openssl:
openssl.exe dgst -sha256 <new file>

Creating PKI Key Pairs

User Guide Intel Confidential 13

The public key hash is a readable string, and can be copied and pasted from the text

file as needed.

3.4 Key Security

Although the same key may be used for signing each entry in the OEM Key Manifest,

and indeed for signing the manifest itself, Intel recommends using separate key pairs
for signing each component. Using the same key for signing multiple components is
less secure, as if the key is compromised, the entire package is compromised.

Private keys should be always stored securely and kept secret to provide a robust

secure boot flow and firmware load. If the keys escape to 3rd parties, they may be
used to create and sign unofficial versions of the binaries, which can then be loaded
onto the platform.

Keys may be needed again if there is a need to re-sign a future version of a binary.

OEMs need to take special steps to ensure that the private keys are kept secure,
despite Intel FIT and Intel MEU needing access to them while signing components and

building the image. For example, the Intel FIT and MEU could be run on a secure
server which houses the keys.

OEMs should use a set of keys during the development process, and then a separate

set of keys for creating production images. This will ensure that on production

platforms, only the production OEM Key Manifest, with signatures for production
components, can be run.

§

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

14 Intel Confidential User Guide

4 Using Intel® MEU to Create and

Add Manifests to Binaries and

Sign Binaries

4.1 Introduction

All of the OEM Key Manifest components owned by an OEM are expected to have a

manifest added. If the IFWI image is signed, all of the components also need to be
signed. Intel provides the Intel MEU to assist with this task. The Intel MEU is also able
to add required manifests, metadata (where relevant), as well as compress and stitch

binary components (where relevant).

4.2 Binary Manifesting Signing Overview

Intel signing for GLK platforms employs RSA 2048 public key infrastructure (PKI)

mechanism to sign and verify components of the IFWI image. The private key is used

to sign the image components as shown in Figure 2 below. The Intel MEU is used to
create the manifests, and interfaces with OpenSSL to add signatures to the manifest.

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

User Guide Intel Confidential 15

Figure 2. Schematic View of Manifesting and Signing Process

Calculate Hash of the Data 1011011001100000011100001100000001

Encrypt the Hash using Private Key

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
Attach Signature to

Manifest

Data

SHA256

RSA2048

Signature

Manifested and
Digitally Signed Data

Add Manifest to the file, including
hash data

Calculate Hash of the
Manifest SHA2561011011001100010101100001100101001

4.3 Intel® MEU Configuration

To use Intel MEU, you first need to configure the tool. To do this, run the following

command:
meu -gen meu_config

This will generate a default configuration xml file:

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

16 Intel Confidential User Guide

Figure 3. Intel MEU Configuration xml

If you will not be signing the manifests, then edit the ‘SigningTool’ node to be

‘Disabled’.
<SigningTool label="Disabled" value_list="Disabled,,OpenSSL,,
MobileSigningUtil" label="Signing Tool" help_text="Select tool to be
used for signing, or disable signing." />

If you will be signing the manifests, the xml should be edited to ensure the

‘SigningToolPath’ node correctly points to the OpenSSL executable file, and that the

path to the private key used for signing is correct. You are free to edit the other fields
if appropriate.

4.4 Intel® MEU Usage Flow

Intel MEU supports manifesting and signing a large number of different file types. To

see the full list, run the following:
meu.exe --binlist

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

User Guide Intel Confidential 17

Figure 4. Intel MEU list of Supported Binary Types

For each file that needs to be manifested and signed, you use Intel MEU to generate

an xml for that file type, and then edit the xml to ensure the data is correct – in
particular that it includes the path to the relevant file. You then call MEU with the

edited xml as input, and pass in the name of the required output file, and it will create
the manifested and signed output file:
meu.exe -f <input.xml> -o <output.bin>

It is recommended practice to sign each file with a different private key. An easy way

to do this is to use the configuration xml without changing it, but override the private

key used for signing on the command line:
meu.exe -f <input.xml> -o <output.bin> -key<privatekey.pem>

4.5 Intel® MEU Decomposition

Intel MEU is able to decompose a manifested and signed binary, to return it to the

original state it was in before Intel MEU added a manifest and/or signature, together

with an xml detailing the decomposition. This xml can later be used as input to Intel®

MEU to recreate the full binary with manifest and signature. The –decomp command
also requires the binary type as its first parameter. So, for example, to decompose a
BIOS binary, you can call:
meu -decomp BIOS -f <input.bin> --save <decomp.xml>

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

18 Intel Confidential User Guide

4.6 Intel® MEU Resign

Intel® MEU is able to resign a binary that has already been signed. This is very useful

when changing the signing keys – the relevant binary files just need to be resigned.

meu.exe --resign -f <input.bin> --o <output.bin> -key <privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel® MEU configuration xml.

Some binaries – such as full IFWI images, include multiple manifests. When calling the

–resign option on such binaries, you need to include the index of the manifest to be
resigned, or ‘all’ if all are to be resigned (using the new key). If the index, or ‘all’ is
not included, Intel® MEU will show a full list of the manifests included in the binary:

More than one manifest was found in this file. Please provide a comma-
separated list of the manifest indices you want to resign. (ex. -resign
"0,3,5") or specify "all" (ex. -resign all)
The following manifests were detected:
 Index | Offset | Size | Name (if available)

 0 | 0x000002058 | 0x000000378 | SMIP.man
 1 | 0x000006058 | 0x000000378 | RBEP.man
 2 | 0x00000E088 | 0x0000003E0 | PMCP.man
 3 | 0x00001C130 | 0x000000D6C | FTPR.man
 4 | 0x00006F000 | 0x0000002EC | rot.key
 5 | 0x000072CD0 | 0x0000003B8 | oem.key
 6 | 0x000077070 | 0x0000002EC | IBBP.man
 7 | 0x0000D1058 | 0x000000378 | ISHC.man
 8 | 0x0001116E8 | 0x0000011B0 | NFTP.man
 9 | 0x0005C2070 | 0x000000378 | IUNP.man

The Intel® MEU can then be called again, including the index desired. Following the

above example, if the SMIP is to be resigned, call:
meu.exe --resign 0 -f <input.bin> --o <output.bin> -key <privatekey.pem>

4.6.1 Secure Signing for SMIP

FIT requires SMIP private key to be provided in order to build SMIP partition. If FIT is

not running in secure environment, you may exercise secure signing by giving a
dummy private (non-production) key to FIT different than your production key (as the
one in OEM KM). FIT validates all the manifests in the image by default before building

the image. So in order to allow FIT to continue building the image without erroring out
(due to manifest mismatch), this can be done by disabling the option in FIT “Build
Settings” setting “Verify manifest signing keys against the OEM Key Manifest” to “No”.

This allows you to resign SMIP partition in your production IFWI using the SMIP

production key after the image has been created by FIT.

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

User Guide Intel Confidential 19

So to resign SMIP in production IFWI with production key, you may call:

meu.exe --resign 0 -f <input.bin> --o <output.bin> -key <privatekey.pem>

Note: This disables FIT feature of validating IFWI manifests and key mismatching.

4.7 Different Binary Types Supported By Intel® MEU

Intel MEU is able to add manifests and sign several types of files, as enumerated

below. There are also other binaries that may be signed by other tools (such as BIOS
Capsule creation tools, OS loader creation tools etc.), but which Intel MEU does not

sign.

Note: Some firmware image binary components can be created by Intel. In all cases of

binaries provided by Intel, the binary will already have a manifest and signature, and OEMs

do not need any further processing on these binaries. The hashes for any binary file provided

by Intel that can be replaced by an OEM binary should be included in the OEM Key Manifest

(see explanation below on the OEM Key Manifest). This applies to all binaries provided by

Intel except for CSE and PMC binaries, whose hashes are handled internally via Intel Key

Manifests, and should not be included in the OEM Key Manifest.

4.7.1 IAFW/BIOS

In GLK platforms, IAFW/BIOS is composed of IBB and OBB sub-partitions. The IBB

sub-partitions includes a Boot Policy Manifest (BPM.met.bin) module, as well as IBBL

and IBB data modules. The OBB sub-partition can be a single module, or itself

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

20 Intel Confidential User Guide

composed of modules, including IBBR, OBB, OBBX, OBBY and NvStorage modules.

Please contact your BIOS vendor or AE for explanations on these components of the
IAFW/BIOS, and how they are created.

In order to support Boot Guard, the BPM.met needs to contain hashes of the IBB, IBBL

and OBB partitions in the BIOS image. The creation of BPM.met, and the calculation
and population of the hash fields is not done using Intel® MEU. Please contact your

BIOS vendor or AE for details on how to create the BPM.met module.

4.7.1.1 Using Intel® MEU to Stitch together BIOS components

Intel MEU is able to stitch the BIOS components into a single binary. It creates the

manifest file for the BIOS, signs and stitches together all of the components.

To use MEU to stitch, manifest and sign the IAFW/BIOS, you will need to first generate

an xml template especially for IAFW/BIOS, using the command

meu -gen Bios

Figure 5. Default BIOS xml

The BIOS.xml file generated can then be edited to ensure the input files are correct.

The default BIOS.xml file assumes that the only modules to be stitched are IBBL.bin,
IBB.bin and OBB.bin. It does not include fields for all possible sub-modules, as the
number and identity of such binaries depends on how the BIOS is built.

For example, the default template has a single DataModule node under the IBB Sub

Partition node. If the BIOS has the IBB and IBBL as separate binaries, an extra node
will need to be added.

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

User Guide Intel Confidential 21

Likewise, under the OBB sub partition node, the default template has two DataModule

nodes (IBB & IBBL), while the BIOS may need entries for IBBR, OBB, OBBX, OBBY and
NvStorage. If the BIOS is to be created by stitching together these extra binaries,

they can be added to the xml file.

Figure 6. BIOS xml Edited to Accept all Possible Binary Components

The xml should also be edited to indicate if a Boot Policy Manifest (BPM) should be

created and stitched into the BIOS binary. A BPM is required is Boot Guard will be
enabled on the platform, otherwise it does not need to be created.

4.7.1.1.1 Example of node for creation of BPM

<BootPolicyManifest>
<Enabled value=" true" value_list="true,,false" help_text="If set
to 'Disabled' the Boot Policy Manifest will not be created and
thus the IBB, IBBL and OBB modules will not be covered by the
manifest signature." />

</BootPolicyManifest>

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

22 Intel Confidential User Guide

4.7.1.1.2 Example of node for non-creation of BPM

<BootPolicyManifest>
<Enabled value="false" value_list="true,,false" help_text="If set

to 'Disabled' the Boot Policy Manifest will not be created and
thus the IBB, IBBL and OBB modules will not be covered by the
manifest signature." />

</BootPolicyManifest>

Once the BIOS xml has been edited to include all the required input files, and create

the BPM if desired, the MEU can be run with the xml as input, to manifest and sign it
with the private key created for this purpose.
meu.exe -f <BIOS.xml> -o <BIOS.bin> -key<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel MEU configuration xml.

4.7.1.2 Using Intel® MEU to Sign an already-stitched BIOS Binary

Intel® MEU is able to sign a full BIOS binary that has already been stitched together.

For example, an IBV may deliver a fully stitched binary to an OEM, who will then want
to sign it. The signing functionality is not dependent on whether the BIOS has already

been signed or not – in all cases, a new signature is placed in the manifest of the
binary.

To sign, or resign a binary, follow the instructions in section 4.6.

4.7.2 ISH

The ISH binary is regarded as a ‘code partition’ by Intel MEU, and an xml template can

be generated for it using the following command:

meu -gen CodePartition

The xml generated will need to be edited to enter version information about the code
partition, as well as the path to the binary. If compression is required, the path to the

LZMA compression file also needs to be entered. Note that Intel MEU tool only
supports the LZMA tool, provided by Intel, to compress binaries. The ISH binary
requires compression.

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

User Guide Intel Confidential 23

Figure 7. Code Partition xml

Once the Code Partition xml has been edited to include all the required input files, the

MEU can be run with the xml as input, to manifest and sign it with the private key
created for this purpose.
meu.exe -f <CodePartition.xml> -o <ISH.bin> -key<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel MEU configuration xml.

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

24 Intel Confidential User Guide

4.7.3 IUnit / aDSP

The IUnit and aDSP binaries are regarded as a ‘code partition metadata’ by Intel MEU,

and an xml template can be generated for it using the following command

meu -gen CodePartitionMeta

The xml generated will need to be edited to enter the path to the binary, and also the

path to a metadata binary file.

Figure 8. Code Partition Metadata xml

Once the Code Partition Metadata xml has been edited to include all the required input

files, the MEU can be run with the xml as input, to manifest and sign it with the
private key created for this purpose.
meu.exe -f <CodePartitionMeta.xml> -o <IUnit.bin> -key<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel MEU configuration xml.

Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries

User Guide Intel Confidential 25

4.7.4 SMIP

SMIP is created directly by Intel FIT, which handles the manifesting and signing as

well (configuration parameters in Intel FIT allow it to interface with Intel MEU). If
creating a signed IFWI image, OEMs will need to provide Intel FIT with the path to the
private key for signing the SMIP. Intel FIT never accesses the private key, but passes
the path to the Intel MEU, which in turn passes it to the signing tool. The path to the

key is entered in the Platform Protection tab in Intel FIT.

§

OEM Key Manifest

26 Intel Confidential User Guide

5 OEM Key Manifest

5.1 Introduction

The OEM Key Manifest is the central part of the entire signing mechanism. It lists the

public key hashes of all the OEM-created binaries within the IFWI, as well as other
binaries and manifests that can be loaded at a later date (such as audio and camera

binaries, OS Kernel and OS Boot loader, and secure tokens).

If the IFWI image will not be signed, the OEM can skip the creation of an OEM Key

Manifest.

The OEM Key Manifest itself, once created, is signed with a key, whose public key

hash will be entered into Intel FIT. When the platform manufacture is complete, this
public key hash will be burned into a fuse (FPF) that can never be changed. Thus we

create a secure verification mechanism: firmware is able to verify that the OEM Key
Manifest on the platform is the same one whose hash is burned into a hardware fuse,
and each hash within the manifest allows firmware to verify binary or manifest

components it plans to load.

Important!

Since the hash burned into the platform hardware can never be changed, it is critical

to save and protect the private key used to sign the OEM Key Manifest. If at any stage
a new image needs to be burned onto the platform (e.g. via DnX, or other flash

burning mechanism), it will need to be signed with this key.

5.2 Creation of Manifest

The manifest file xml template can be generated using the following command:

meu -gen OEMKeyManifest

This generates an xml template with a single KeyManifestEntry node, which lists the

file type, and the path to its public key hash.

OEM Key Manifest

User Guide Intel Confidential 27

Figure 9. Default OEM Key Manifest XML

The KeyManifestId field must not be left with its default value of 0x0, and must be

given some non-zero value. It is critical that the matching field in FIT is also changed

to match the non-zero value, as this field will be burned into an FPF and used to

validate the OEM Key Manifest on platform boot.

Extra ‘KeyManifestEntry’ nodes should be added for each file for which there is a

unique key hash to be entered. If several files share the same key, they can be
included within the same node, as in the default xml template, where
BootPolicyManifest and IfwiManifest both share the same pubkey_hash.bin.

So, for example, if the OEM Key Manifest wants to have

 BootPolicyManifest and IFWIManifest signed with key 1

 IshManifest and ISHBupManifest signed with key 2

 OemSmipManifest signed with key 3

It will appear as follows:

OEM Key Manifest

28 Intel Confidential User Guide

Figure 10. OEM Key Manifest with 3 Different Signing Keys

The file types enumerated in the OEM Key Manifest, and for which key hashes can be

entered are:

Table 1. Components Recognized by Intel MEU, and How Key Manifests should Handle

Entry Name Meaning Who Creates Include in OEM Key
Manifest?

BootPolicyManifest IFWI/BIOS OEM Yes

iUnitBootLoaderManifest Camera firmware

boot loader

Intel if binary

provided by Intel,

OEM if OEM using a

proprietary binary

Only if OEM is replacing

this binary with his own

version

iUnitMainFwManifest Camera main

firmware

Intel if binary

provided by Intel,

OEM if OEM using a

proprietary binary

Only if OEM is replacing

this binary with his own

version

OEM Key Manifest

User Guide Intel Confidential 29

Entry Name Meaning Who Creates Include in OEM Key
Manifest?

cAvsImage0Manifest Audio (aDSP)

firmware 0

Intel if binary

provided by Intel,

OEM if OEM using a

proprietary binary

Only if OEM is replacing

this binary with his own

version

cAvsImage1Manifest Audio (aDSP)

firmware 1

Intel if binary

provided by Intel,

OEM if OEM using a

proprietary binary

Only if OEM is replacing

this binary with his own

version

IfwiManifest For the creation

of an update

image for use via

BIOS capsule

update

OEM Yes

OsBootLoaderManifest OS Boot loader OEM Yes

OsKernelManifest OS Kernel OEM Yes

OemSmipManifest SMIP includes

many of the

settings defined

in Intel FIT

OEM Yes

IshBupManifest Integrated

Sensor Hub bring

up firmware.

Intel No

OEMDebugManifest OEM Debug token OEM Yes

In GLK, binary files provided by Intel do not need to have their hashes included in the

OEM Key Manifest, unless replaced by the OEM, as called out in the table above.

Not every hash listed in the table above needs to be entered – for example, if no aDSP

audio firmware is planned to be supported, the manifest may omit the audio entries.
In such a case, audio firmware would fail to load, if attempted. Likewise, if the OEM is

not using Intel APIs to verify OS kernel and manifest, then the respective hashes do
not need to be included in the OEM Key Manifest. If the OEM does not plan to support
Secure Tokens, then the token hashes do not need to be included.

Once the OEM Key Manifest xml has been edited to include all the required hashes,

the MEU can be run with the xml as input, to manifest and sign it with the private key
created for this purpose.
meu.exe -f <OEMKeyManifest.xml> -o < OEMKeyManifest.bin> -
key<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel MEU configuration xml.

Add Components to Intel® FIT

30 Intel Confidential User Guide

6 Add Components to Intel® FIT

6.1 Introduction

Intel FIT is a tool provided to OEMs to stitch together multiple binary files,

configuration data and other input into a full IFWI image. Not every image will have
every component e.g. only images including Intel ISH need to include an ISH image

binary in Intel FIT. This document will only discuss the usage of the tool as relevant to
the signing mechanism. The full image creation procedure is detailed in the Gemini
Lake - Intel® Trusted Execution Engine (Intel® TXE) Firmware Bring-Up Guide.

6.2 Include each Binary Component

FIT includes input fields allowing the input of binary files. Most are available in the

Flash Layout tab.

Figure 11. Intel FIT fields to enter IUnit, PMC and uCode Binaries

6.3 Add the Private Key for SMIP

Add to Intel FIT the private key for SMIP. The field is available in the Platform

Protection tab

Since Intel FIT creates the SMIP binary, and calls Intel MEU to add a manifest and

signature to it, it needs access to the private key for signing SMIP.

Add Components to Intel® FIT

User Guide Intel Confidential 31

Figure 12. Entering SMIP private key

Note: If the image will not be signed, this field should be left empty.

6.4 Add the OEM Key Manifest

This hash will be burned into an IFP when the system closes manufacture, and can

never be changed after this stage.

Note: If the image will not be signed, this field should be left empty.

Figure 13. Entering OEM Key Manifest

6.5 Add the Public Key Hash for OEM Key Manifest

Add to Intel FIT the public key hash for the OEM Key Manifest. The field is available in

the Platform Protection tab.

This hash will be burned into an IFP when the system closes manufacture, and can

never be changed after this stage.

Note: If the image will not be signed, this field should be left empty.

Add Components to Intel® FIT

32 Intel Confidential User Guide

Figure 14. Entering OEM Public Key Hash

6.6 Change the Key Manifest ID

The Key Manifest ID field must be changed from 0x0, to match the value set in the

OEM Key Manifest.

Note: If the image will not be signed, this field should be set to 0.

Figure 15. Entering OEM Public Key Hash

6.7 Enable Boot Guard

Boot Guard can be enabled using the ‘Boot Guard Profile Configuration’ field in the

Platform Protection tab. Legacy mode essentially disables Boot Guard, and the

components within the BIOS image are then not verified before loading. If Boot Guard
is enabled, each component within the BIOS is validated before loading.

Note: If the image will not be signed, Boot Guard cannot be enabled

6.8 Configure Intel FIT to call Intel® MEU to Sign and

Manifest the SMIP

Configure Intel FIT to be able to call the Intel MEU to sign and manifest the SMIP. This

is done via the Build Settings dialog. You need to enter the path to the Intel MEU, the
path to the signing tool, and the identity of the signing tool (currently only OpenSSL is

supported).

Note: If the image will not be signed, the signing tool fields should be left empty. The

manifest tool path still needs to be configured.

Add Components to Intel® FIT

User Guide Intel Confidential 33

Figure 16. Configuring Intel FIT to sign the SMIP

6.9 Add Debug Token

In some cases, add a debug token to Intel FIT, to allow the image to be debugged.

This field is available in the Debug tab. Note that in general, debug tokens will be

injected into the system post-manufacture, as needed.

Note: If the image will not be signed, this field cannot be used.

Figure 17. Adding a Debug Token

§

Creation of Update Image

34 Intel Confidential User Guide

7 Creation of Update Image

7.1 Introduction

Gemini Lake platforms accept image updates via 2 protocols

 DnX: DnX Recovery Image

 BIOS Capsule Update: update mechanism that executes using UEFI APIs to target

the intended device. For TXE updates, this would use TXE APIs to ensure TXE
update is compatible.

7.2 DnX

Gemini Lake platforms, using UFS or eMMc flash devices, support burning of IFWI

images using the DnX protocol. The IFWI image supplied must be manifested, and
include in its manifest an OEM ID and platform ID. If the target platform had a signed
image on it, with the FPF burned, the DnX image must also be signed. These values

are checked by the DnX protocol against data burned into FPF fuses, and only if they
match will the image burn be accepted.

Important

Ensure that the key used for signing the DnX image is the same key used for signing

the OEM Key Manifest.

7.2.1 DnX Image Creation Using Intel® MEU

A DnX image can be built from the standard IFWI created by Intel FIT. To do this, you

call Intel MEU to generate a template for DnX image creation

meu -gen DnXRecoveryImage

This generates an xml template with fields to enter the path to the IFWI binary, and

the PlatformID and OemID fields required in a DnX manifest.

Creation of Update Image

User Guide Intel Confidential 35

Figure 18. DnX xml

Once the xml template has been edited, Intel MEU can be called to create the DnX

image
meu.exe -f <DnXRecoveryImage.xml> -o <nXRecoveryImage.bin> -
key<privatekey.pem>

It is only necessary to override the private key for signing (as in the example) if the

key is different to that defined in the default Intel MEU configuration xml.

If the target platform does not have the OEM Key Manifest hash burned in the FPF, the

DnX image does not need to be signed (but it does need a manifest).

7.2.2 DnX Image Creation Using Intel FIT

You can use Intel FIT to create a DnX image. Intel FIT interfaces with Intel MEU to do

the steps described in the previous section. To use Intel FIT, configure Intel FIT to
also build, manifest and sign a DnX image during compilation time. This requires

opening Intel FIT Settings dialog, which includes the required fields:

 Path to the private key for signing the DnX image, which is the same key used for
signing the OEM Key Manifest. This is only required if the target platform has the
OEM Key Manifest hash burned in the FPF

 OemID

 PlatformID

Creation of Update Image

36 Intel Confidential User Guide

7.3 BIOS Capsule Update

The creation of the capsule is not done via Intel FIT or Intel MEU, but via BIOS tools.

Important

An image used for BIOS capsule update must be signed with the key whose hash

appears in the OEM Key Manifest ‘IfwiManifest’ node. If the platform OEM Key Manifest
hash was not burned in the FPF, the update image does not need a signature.

§

Using Intel MEU with Other Signing Tools

User Guide Intel Confidential 37

8 Using Intel MEU with Other

Signing Tools

8.1 Introduction

Some OEMs will have already existing signing tools and systems, and will want to use

Intel® MEU together with them, and not have to integrate with OpenSSL.

This can be supported – however, it is more complex. The steps are as follows

1. Create key pairs and key hashes.

2. Create all manifested binaries.

3. Export manifests

4. Use tool to sign each of the manifests

5. Import the resigned manifests into the binaries.

8.2 Creating Keys and Hashes

Create key pairs and key hashes using the other tools. Creation of the hashes should

be done manually, as described in section 3.3.2, but using the alternative tools to do

the operations specified for OpenSSL.

8.3 Create Manifested Binaries

Create all manifested binaries, as described in previous chapters. The Intel MEU

configuration xml can leave the fields for encryption tool empty, and then the signing
steps will be skipped during manifest creation.

8.4 Export Manifests

Use the MEU –export function to export the manifest from the binaries who need

signatures added or changed. The manifest is exported to a directory.
meu -export -f <binary.bin> -o <directory_containing_manifests>

If the binary includes multiple manifests, you need to give the index of the desired

manifest, e.g.

meu -export 0 -f <binary.bin> -o <directory_containing_manifests>

If you do not supply an index, or include all with the –export flag, MEU will output a

list of all the manifests, including their indices:

More than one manifest was found in this file. Please provide a

comma-separated list of the manifest indices you want to export.

(ex. -export "0,3,5") or specify "all" (ex. -export "all")

Using Intel MEU with Other Signing Tools

38 Intel Confidential User Guide

The following manifests were detected:

 Index | Offset | Size | Name (if available)

 0 | 0x000001130 | 0x000000D9C | FTPR.man

 1 | 0x000053000 | 0x000000330 | rot.key

 2 | 0x000094058 | 0x000000378 | RBEP.man

 3 | 0x0000A1748 | 0x000001280 | NFTP.man

 4 | 0x0001A2058 | 0x000000378 | DNXP.man

Error 26: Failed to export manifest(s). Missing manifest indices

list.

8.5 Sign Manifests

Use alternative tool to sign the manifest, and enter the crypto information into the

manifest.

The manifest header is defined as follows:

Name Offset Size
(bytes)

Description

Header type 0 4 Must be 0x4

Header Length 4 4 In DWORDs; equals 161 for this version

Header Version 8 4 0x10000 for this version

Flags 12 4 Bit 31: Debug Manifest (manifest is debug signed, not

production signed)

Bits 0-30: reserved, must be 0

Vendor 16 4 0x8086 for Intel

Date 20 4 yyyymmdd in BCD format

Size 24 4 In DWORDs, size of entire manifest (header +

extensions). Maximum size is 2K DWORDs (8KB).

Header ID 28 4 Magic number. Equals “$MN2” for this version

Reserved 32 4 Must be 0

Version 36 8 Major, minor, hotfix, build

Security Version

Number

44 4 SVN, least significant byte used to derive keys

Reserved 48 8 Must be 0

Reserved 56 64 Must be 0

Modulus Size 120 4 In DWORDs; 64 for pkcs 1.5-2048

Exponent Size 124 4 In DWORDs; 1 for pkcs 1.5-2048

Using Intel MEU with Other Signing Tools

User Guide Intel Confidential 39

Name Offset Size
(bytes)

Description

Public Key 128 256

Exponent 384 4

Signature 388 256 RSA signature of manifest. The signature is an PKCS #1-

v1_5 of the entire manifest structure, including all

extensions, and excluding the last 3 fields of the

manifest header (Public Key, Exponent and Signature).

There may be multiple extensions after this manifest header, making up the rest of

the manifest binary.

The entire manifest binary must be hashed using SHA-256, except for the 3 ‘crypto’

fields in the header: Public Key (offset 128, size 256), Exponent (offset 384, size 4)
and Signature (offset 388, size 256). The hash must then be encrypted with PKCS #1-

v1_5 to create the signature, and then the 3 ‘crypto’ fields in the manifest header
populated with the key, exponent and signature.

No other fields in the manifest should be changed.

8.6 Import Manifest

Use the MEU –import function to import the signed manifest back into the binary. The

signed manifest must be in a separate directory, which is passed as an input
parameter. If the binary supports multiple manifests (e.g. a full IFWI binary), and the

folder has multiple manifests, the command will be able to import them all back into

the binary.
meu.exe -import <directory_containing_manifests> -f <input_binary.bin>
-o <output_binary.bin>

§

Common Bring Up Issues and Troubleshooting Table

40 Intel Confidential User Guide

9 Common Bring Up Issues and

Troubleshooting Table

9.1 Common Bring Up Issues and Troubleshooting
Table

Problem / Issue Solution / Workaround

Intel MEU tool fails to run Confirm that the MEU_Config and template xml files are

present in the same folder of the Intel MEU tool.

Confirm that both files have been modified properly.

Rebuild of image requires SMIP

private key

Any change to an image will require a full rebuild, including

the SMIP, which requires the SMIP private signing key. If

the image is a customer image, Intel debug teams will

need the signing key to rebuild the image, or request the

customer to rebuild.

§

	1 Introduction
	1.1 Goal
	1.2 Pre-Requisites
	1.3 Tools Used In This Document
	1.4 Terminology

	2 Manifesting and Signing OEM Components in the IFWI Image
	2.1 Creating a Signed IFWI Image
	2.2 Creating an Unsigned IFWI Image
	2.2.1 Summary of creating Un-signed Image:

	3 Creating PKI Key Pairs
	3.1 Introduction
	3.2 Generating Key Pair for Signing
	3.3 Creating the Public Key Hash:
	3.3.1 Creating Public Key Hash Using Intel® MEU
	3.3.2 Creating Public Key Hash Manually

	3.4 Key Security

	4 Using Intel® MEU to Create and Add Manifests to Binaries and Sign Binaries
	4.1 Introduction
	4.2 Binary Manifesting Signing Overview
	4.3 Intel® MEU Configuration
	4.4 Intel® MEU Usage Flow
	4.5 Intel® MEU Decomposition
	4.6 Intel® MEU Resign
	4.6.1 Secure Signing for SMIP

	4.7 Different Binary Types Supported By Intel® MEU
	4.7.1 IAFW/BIOS
	4.7.1.1 Using Intel® MEU to Stitch together BIOS components
	4.7.1.1.1 Example of node for creation of BPM
	4.7.1.1.2 Example of node for non-creation of BPM

	4.7.1.2 Using Intel® MEU to Sign an already-stitched BIOS Binary

	4.7.2 ISH
	4.7.3 IUnit / aDSP
	4.7.4 SMIP

	5 OEM Key Manifest
	5.1 Introduction
	5.2 Creation of Manifest

	6 Add Components to Intel® FIT
	6.1 Introduction
	6.2 Include each Binary Component
	6.3 Add the Private Key for SMIP
	6.4 Add the OEM Key Manifest
	6.5 Add the Public Key Hash for OEM Key Manifest
	6.6 Change the Key Manifest ID
	6.7 Enable Boot Guard
	6.8 Configure Intel FIT to call Intel® MEU to Sign and Manifest the SMIP
	6.9 Add Debug Token

	7 Creation of Update Image
	7.1 Introduction
	7.2 DnX
	7.2.1 DnX Image Creation Using Intel® MEU
	7.2.2 DnX Image Creation Using Intel FIT

	7.3 BIOS Capsule Update

	8 Using Intel MEU with Other Signing Tools
	8.1 Introduction
	8.2 Creating Keys and Hashes
	8.3 Create Manifested Binaries
	8.4 Export Manifests
	8.5 Sign Manifests
	8.6 Import Manifest

	9 Common Bring Up Issues and Troubleshooting Table
	9.1 Common Bring Up Issues and Troubleshooting Table

